Авторизация
Забыли пароль?
Сброс пароля
Вернуться к авторизации

Как с помощью programmatic-рекламы получить 255 000 новых и 370 000 повторных покупок: кейс Додо Пиццы и Bidease

04 декабря ‘24

Заказчик: Додо Пицца

В нашем кейсе мы расскажем, как укреплять позиции бренда без космических затрат, и о том, как в решении этой задачи помогают алгоритмы ML и AI.

Агентство-исполнитель кейса

Bidease

Как эффективно привлекать пользователей и не менее успешно возвращать их в продукт на высококонкурентном рынке food delivery? Основными ингредиентами здесь будут данные, предиктивные алгоритмы и широкие возможности In-App-трафика.

1. Вводная задача от заказчика, проблематика, цели

Задача

На этом проекте у Bidease были сразу две ключевые задачи:

  • эффективное привлечение релевантной и лояльной аудитории с соблюдением KPI клиента по стоимости первой покупки;
  • эффективный ретаргетинг с соблюдением KPI клиента по стоимости повторной покупки.

ГЕО: Россия

Источники: Bidease

Платформы: iOS, Android

Трекер: AppsFlyer

Период: май 2023 — март 2024 включительно. (Период, описанный в кейсе. Сотрудничество продолжается.)

~~График динамики CPO при продвижении на iOS.~~В сентябре — октябре 2023-го клиент усилил свои промоактивности. В связи с этим аукцион разогрелся, что отразилось на CPO.В декабре традиционно перегретый аукцион, что также отразилось на стоимости целевого действия.

~~График динамики CPO при продвижении на Android.~~Октябрь — ноябрь 2023 — период распродаж и скидок: «Черная пятница», «Киберпонедельник» и пр. В это время стоимость целевого действия подросла.Декабрь — «горячее» время перед новогодними праздниками.

~~График динамики CPO при ретаргетинге на Android.~~Март 2024-го — период, в который мы проводили тесты на, как выяснилось, весьма холодную аудиторию: «Установили приложение за последние 180 дней» и «Установили приложение за последние 90 дней». Что отразилось на CPO.

2. Описание реализации кейса и творческого пути по поиску оптимального решения

Решение

Мы запускались максимально широко и в данном кейсе были задействованы практически все биржи: «Яндекс», ironSource, Vungle, AppLovin, TaurusX, Unity, Mintegral, Fyber, BidMachine, Chartboost, BIGO Ads.

User Acquisition на iOS

Как вы знаете, самая распространенная «головная боль» при работе с iOS-трафиком — это его «неопознанность», проще говоря, отсутствие IDFA.

В нашем случае результативным инструментом, той самой «волшебной таблеткой», стал автопилот, который эффективно и в оптимальные сроки обучил три предиктивные модели. Эти модели учитывали актуальный аукцион и в соответствии с ним распределяли бюджет по биржам, креативам, версиям ОС и прочим параметрам.

Две модели были обучены на конкретные целевые действия, а именно:

  • на покупку;
  • на предшествующие покупке ивенты: установку, добавление в корзину и экран оплаты.

Третья модель — широкая, которая представляла собой ансамбль из других моделей.

На этом моменте предлагаем немного задержаться и рассказать вам про ту самую конверсионную связку. Наша широкая модель — это набор из нескольких моделей на разные ивенты по воронке продаж приложения, таких как: купил, не купил и оставил заказ на экране оплаты, добавил в корзину и оставил заказ и прочих. Специалист по закупке In-App-трафика совместно с клиентом выделил наиболее актуальные и репрезентативные действия пользователей внутри приложения, а автопилот в ходе кампании уже сам выбирал из них наиболее подходящие для быстрого и эффективного решения задачи.

Все три модели на автопилоте с момента запуска очень быстро «раскачивались». Буквально за 9–14 дней они набирали необходимое количество статистически значимых данных, дообучались, и уже на 15-й день продвижения мы наблюдали заметное снижение CPI и CPO при двукратном увеличении количества покупок.

User Acquisition на Android

Как известно, Android-трафик в меньшей степени страдает от анонимности пользователей — поэтому в этом случае мы разбавили ассортимент моделей lookalike’ом. Мы обучили LAL-модель на такие целевые действия, как добавление в корзину и покупку. Две другие модели были построены на наших данных и обучены по отдельности на покупку и на набор следующих событий «установка + добавление в корзину + просмотр корзины».

Аналогично iOS-трафику все эти модели были на автопилоте. Мы задали вводные один раз, а уже дальше они всё делали сами, в том числе с помощью наших инструментов для адаптации CPM в зависимости от аукциона и конкуренции на рынке.

Retargeting на Android

Пользователям девайсов на Android мы также напоминали о том, что пора вновь побаловать себя вкусной пиццей.

С целью увеличить эффективность ретаргетинговых коммуникаций и выявить наиболее заинтересованную и платежеспособную часть пользователей мы разделили аудиторию клиента на следующие три группы:

  • тех, кто покупал на днях, — «Купил 07-30 дней назад»;
  • тех, кто покупал давно, — «Купил 60+ дней назад»;
  • тех, кто покупал относительно недавно, — «Купил 30+ дней назад».

Наиболее активным и перспективным для повторных коммуникаций сегментом оказались те пользователи, которые заказывали пиццу в приложении 30+ дней назад. Поэтому мы решили в первую очередь концентрироваться на нем, что позволило нам грамотно использовать бюджет на ретаргетинг и получать внушительные объемы повторных покупок.

Две другие группы реагировали на рекламные касания с меньшей инициативой, но в целом хорошо. Также мы тестировали (и продолжаем тестировать) и другие аудиторные сегменты.

Креативная составляющая

Несмотря на то что в данном проекте основной фокус внимания сосредоточен на data-driven-подходе и предиктивных алгоритмах, качественный и в буквальном смысле аппетитный визуал также играл существенную роль. Основная ставка делалась на новинках меню и главных УТП продукта.

Для UA-кампаний мы использовали статичные баннеры: квадраты и нативки. Этот формат был недорогим и быстрым в разработке, а также прекрасно соответствовал KPI клиента по стоимости первого заказа.

Для ретаргетинга использовались вертикальные и горизонтальные видео. Видеоформат прекрасно вовлекал и стимулировал пользователей на повторные целевые действия.

Данное вертикальное видео в среднем показывало CTR 22%.

Пример статичного баннера.CTR этого баннера в среднем составлял 2%.

3. Результаты сотрудничества

А теперь переходим к результатам. За время нашего сотрудничества, описанного в кейсе, с мая 2023 по март 2024 включительно, клиент получил 205 000 покупок на iOS, 55 000 покупок и 370 000 повторных покупок на Android.

Дарья Пасюк

Performance Team Lead, Додо Пицца

Наш опыт показал, что In-App-реклама обладает уникальными возможностями для таргетинга и сегментации аудитории, что существенно повышает конверсию и ROI кампаний. Основываясь на данных аналитики и обратной связи от пользователей, мы продолжим оптимизировать стратегии для дальнейшего усиления эффективности In-App-трафика как ключевого компонента нашего маркетингового микса.

Мы убедились в равной, если не более высокой продуктивности этого канала по сравнению с другими источниками трафика:

— Ретаргетинг и вовлечение через In-App-рекламу помогли удерживать пользователей, повышая их лояльность и интерес к продукту. Сегментация пользователей, которые уже взаимодействовали с нашим приложением, привела к увеличению конверсий и снижению стоимости заказа через мобильное приложение.

— Оптимизация рекламных кампаний и более эффективное распределение бюджета снизили общие затраты на привлечение каждого нового клиента.

Благодарим команду Bidease за их профессионализм и продуктивную работу с площадкой, а также за ценные идеи и инсайты, которые помогли нам раскрыть полный потенциал In-App-рекламы.

4. Заключение

Данный кейс является наглядным примером того, как технологии ML и AI позволяют эффективно маневрировать между необходимыми объемами трафика с учетом высокой конкуренции на рынке и стоимостью первой и повторной покупки. Таким образом, реклама в In-App становится отличной возможностью для привлечения лояльных и платежеспособных пользователей и для поддержания плодотворной коммуникации с текущей аудиторией.

Агентство-исполнитель кейса

Bidease

Как эффективно привлекать пользователей и не менее успешно возвращать их в продукт на высококонкурентном рынке food delivery? Основными ингредиентами здесь будут данные, предиктивные алгоритмы и широкие возможности In-App-трафика.

Ruward использует технологию "cookie" – сохранение на компьютере пользователя небольших текстовых файлов. Также мы используем на сайте сервис Яндекс.Метрика. Эта информация не позволит идентифицировать вас, однако может помочь нам улучшить работу нашего сайта. Если вы не согласны, чтобы мы использовали данные технологии, вы должны соответствующим образом установить настройки вашего браузера или не использовать наш сайт.

Согласен