Авторизация
Забыли пароль?
Сброс пароля
Вернуться к авторизации

Машинное зрение для контроля качества бытовой техники: внедрение на завод Ariston

17 июля ‘24

Заказчик: Аристон

Завод электрических водонагревателей Ariston выпускает более 600 тысяч приборов в год. Иногда на производстве сталкиваются с проблемой: специалисты не замечают мелкие дефекты на трубках водонагревателей. Чтобы не допустить выпуск бракованной продукции, было решено применить решение ML Sense.

Агентство-исполнитель кейса

Nord Clan

Одно из направлений ИТ компании Норд Клан - разработка и внедрение решений на основе машинного зрения и нейросетей. Наш продукт Ml Sense полностью российское решение. Оно входит в реестр отечественного ПО, а значит позволяет решить вопрос импортозамещения промышленным предприятиям.

1. Вводная задача от заказчика, проблематика, цели

Задача Ariston: автоматическое выявление брака в трубках забора горячей воды водонагревателя с помощью технологии машинного зрения.

Основные требования заказчика:

Конвейер должен автоматически останавливаться, как только система обнаружит дефект: отсутствие вставки в трубке водонагревателей или заусенцы. При этом должна срабатывать звуковая и световая сигнализация.

Надо учесть, что в зависимости от модели, расстояние между трубками и высота водонагревателя на конвейере может меняться. И водонагреватели могут быть радиально смещены на конвейере.

Задачу решить под ключ: сконструировать мачты крепления и установить необходимое оборудование: камеры машинного зрения с подсветкой, серверное оборудование с монитором, светозвуковые колонны для уведомления оператора о дефектах.

3Д сцена смоделированная для разработки пункта контроля качества

2. Описание реализации кейса и творческого пути по поиску оптимального решения

1. Проектирование внедрения решения

Мы сделали тестовое видео на производстве, чтобы определить точки контроля, где будем устанавливать оборудование. Важно было оценить факторы, которые влияют на работу системы ML Sense — уровень освещения, наличие вибраций, радиальное смещение водонагревателей на конвейере, разницу по высоте между водонагревателями и предполагаемой камерой.

Затем подобрали видеокамеры, которые справятся с поиском дефектов на трубках водонагревателей.

Для точного распознавания нейросетью вставок и заусенцев на трубках водонагревателей подобрали осветительные приборы со светодиодами высокой интенсивности, чтобы получать четкие снимки высокой контрастности.

Для быстрого оповещения сотрудников о дефектах внедрили коробочную систему оповещения. Для этого присвоили дефектам три класса оповещения: красный — отсутствие вставки на трубке, желтый — заусенец на трубке, зеленый — бак без дефектов. Как только система “видит” дефект, срабатывает звуковой сигнал и конвейер останавливается. Это дает возможность контролеру снять с конвейера бак, у которого отсутствует вставка на трубке, или отрезать заусенец, если он обнаружен.

2. Подготовка к монтажу и обучение неройсети

Протестировали созданную систему контроля качества трубок водонагревателей ML Sense в собственной лаборатории.

Смоделировали виртуальную 3D сцену на основе замеров с производственной линии. Рассчитали оптимальное расстояние для установки камер, светильника и подготовили чертежи мачты для крепления оборудования, по которым изготовили конструкцию.

Обучили нейросеть распознавать типовые дефекты трубок. Для этого собрали датасет из фотографий, где каждый вид дефектов размечен и классифицирован: на этой трубке есть вставка, на этой есть заусенец.

3. Монтаж системы и внедрение решения на завод

Произвели монтаж оборудования на заводе Ariston во Всеволожске. Установили мачты, закрепили камеры, установили ПО на пост контроля, обучили персонал работать с системой ML Sense. Завершили пусконаладку.

Уже на производстве в ходе работы выявили новый вид втулки — металлическая. В техзадании заказчика этого вида втулки не было, поэтому мы изначально обучали систему только на типовой эмалированной втулке. Но поскольку мы всегда за то, чтобы решение работало и приносило пользу, то мы доработали систему — дообучили нейросеть на металлической втулке тоже.

Сдали заказчику все оборудование и программный код. Сроки реализации: 3 месяца

Интерфейс системы контроля качества бытовой техники ML Sense

3. Результаты сотрудничества

Что изменилось:

Система в 100% случаев видит дефект, оповещает оператора о том, какой вид брака обнаружен, звуковым и световым сигналом, останавливает конвейер.

Сотруднику остается только снять дефектную продукцию с конвейера, отправить ее на доработку, либо исправить дефект вручную.

К чему это привело:

Повышается экономический эффект — больше не нужно рисковать рублем за рекламацию бракованной продукции и репутацией компании из-за человеческого фактора.

Улучшается мотивация операторов конвейерной линии — система избавляет их от рутинного труда, позволяет работать быстрее и с большей пользой для компании.

Михаил Павлов

Менеджер по качеству, Аристон

ООО «Аристон Термо Русь» благодарит компанию ООО «Норд Клан», за профессионализм и качество работ в рамках интеграции проекта автоматизированной системы обнаружения дефектов на линии сборки. Команда подрядчика продемонстрировала понимание задачи и слаженную работу на всех этапах — от разработки архитектуры и алгоритмов до тестирования и интеграции с производственной линией. А также высокий уровень экспертизы в области машинного обучения и нейросетей.

Результаты внедрения системы соответствуют нашим ожиданиям. Система демонстрирует стабильную и точную работу, позволяя своевременно выявлять дефекты. Кроме того, обеспечивает сбор ценных данных, которые могут быть использованы для дальнейшего совершенствования производственного процесса. Команда специалистов продемонстрировала оперативную реакцию на возникающие вопросы и выработку соответствующих решений.

Пост контроля качества бытовой техники системой ML Sense на заводе Аристон

4. Заключение

Кейс завода электрических водонагревателей Ariston — наглядный пример того, как с помощью машинного обучения можно автоматизировать контроль качества продукции. Теперь оператору на конвейере не нужно вручную проверять каждый водонагреватель. Мы заменили визуальный контроль на машинное зрение.

Агентство-исполнитель кейса

Nord Clan

Одно из направлений ИТ компании Норд Клан - разработка и внедрение решений на основе машинного зрения и нейросетей. Наш продукт Ml Sense полностью российское решение. Оно входит в реестр отечественного ПО, а значит позволяет решить вопрос импортозамещения промышленным предприятиям.